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Ž. Kovačević1, R. Hayn2,a, and N.M. Plakida3,4

1 Faculty of Natural Science and Mathematics, University of Montenegro, PO Box 211, 81001 Podgorica, Yugoslavia
2 Institute for Theoretical Physics, University of Technology Dresden, 01062 Dresden, Germany
3 Joint Institute for Nuclear Research, 141980 Dubna, Russia
4 Max Planck Institut for the Physics of Complex Systems, Nöthnitzer Strasse 38, 01187 Dresden, Germany
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Abstract. In the framework of the cell-perturbation method for the original p-dmodel an effective two-band
Hubbard model for the CuO2 plane with Zn impurities is derived. Zn impurities are modelled by Wannièr
oxygen one-hole states at vacant Cu sites. The model is based on the results of band structure calculations
carried out within the local-density approximation. Further reduction to an extended t-J model shows a
large ferromagnetic superexchange interaction between the Cu spin with the nearest virtual oxygen spin
in the Zn cell.

PACS. 71.27.+a Strongly correlated electron systems; heavy fermions – 71.55.-i Impurity and defect levels
– 74.72.-h High-Tc compounds

1 Introduction

In order to test different theories for the electronic
structure and a mechanism of high-temperature super-
conductivity in cuprates, many experimental studies of
impurity effects have been made (see, e.g., [1]). In com-
paring with other trivalent and divalent, magnetic and
nonmagnetic dopants, a striking peculiarity induced by
the substitution of nonmagnetic Zn ion with 3d10 closed
shell into the Cu site has attracted much attention.
The most unexpected result is a strong deterious effect
on superconductivity without changing carrier concen-
tration in low Zn-doped samples (see, e.g., [2]). At the
same time an appreciable reduction of the Néel tem-
perature TN by Zn substitution was observed both in
La2Cu1−yZnyO4 [3] and YBa2(Cu1−yZny)3O6+x [4] com-
pounds. In La2Cu1−yZnyO4 compound TN → 0 at Zn con-
centration of y ' 0.055 [3] that is much smaller than the
site percolation threshold of 0.41 for a square lattice. With
doping the reduction of the Néel temperature by Zn im-
purities increases [4].

The formation of the induced magnetic moment by Zn
substitution in cuprates was found out in several stud-
ies. Measurement of the static magnetic susceptibility re-
vealed the Curie law with static magnetic moment of the
order 1µB per Zn-site for the underdoped region which
decreased with Sr doping in La2−xSrxCu1−yZnyO4 [3,5].
NMR experiments in YBa2(Cu1−yZny)3O6+x [4,6] have
revealed that induced local magnetic moments resides on
the nearest neighbour Cu orbitals. The local magnetic
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moments induced by Zn doping were also observed in elec-
tron paramagnetic resonance [7] and µSR [8] experiments.
The local magnetic moments can be induced also by other
nonmagnetic substitutions with closed shells like Al3+ and
Ga3+ [5,9].

In NMR and NQR measurements [10] the authors ob-
served a local suppression of antiferromagnetic spin corre-
lations near Zn impurities and an induced finite density of
states at the Fermi level. Further investigations by Gd3+

ESR [11] and by NMR [12] have confirmed that in the re-
gions around Zn ions both the superconducting and spin
excitation gaps are suppressed as it has been observed
earlier in the electronic specific heat measurements [13].

A more detailed picture of the evolution of the
spin-fluctuation spectra induced by Zn substitution in
YBa2(Cu1−yZny)3O6+x was obtained by inelastic neutron
scattering. In the underdoped sample with x = 0.6 the
quasi-gap behaviour in spin fluctuations at the antiferro-
magnetic wave vector (π, π) in the pure, superconducting
sample disappears upon Zn doping [14]. In the overdoped
compound with x = 0.97 the spin-fluctuation spectrum
below Tc changes drastically [15]. In the zinc-free sample
it has a gap below 35 meV and a resonance region around
41 meV. In the sample with Zn concentration y = 0.02 the
gap is closed and a broad spectrum in a low energy range
appears with a much lower intensity in the resonance re-
gion.

A large increase of residual resistivity induced by Zn
impurities has been detected in [16–18]. In the underdoped
regime only a few percent of Zn results in the residual re-
sistivity close to the universal two-dimensional resistance
for a potential scatterer in the unitary limit, h/4e2. At this
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universal value of the sheet resistance for various combi-
nations of doped hole and Zn concentrations a transition
from superconducting to insulating state occurs. In the
highly doped regime the universal behaviour was not seen.

These experiments have proved that the Zn+2 ion can-
not be considered just as an inert substitution in the CuO2

plane in spite of its nonmagnetic state with the 3d closed
shell. It reveals itself as a strong potential scattering centre
which also suppresses antiferromagnetic spin correlations
at the nearest Cu sites. These properties of Zn impurity
should be responsible for the strong reduction of supercon-
ducting Tc for the d-wave pairing. As estimations show
[9,19], the pair-breaking effect due to induced magnetic
moments gives an order of magnitude smaller contribu-
tion in comparison with the experimental results.

Several theoretical models have been proposed to ex-
plain the anomalous behaviour of Zn impurity in copper
oxides [20–32]. In a number of papers the Zn impurity
in the CuO2 plane was considered as a local nonmag-
netic impurity level at high energy in the Hubbard model
[21,22] or the t-J model [23]. Using the T -matrix de-
scription, bound impurity states within the Hubbard gap
were obtained. Due to strong Coulomb correlations in the
model, the bare local impurity potential becomes a dy-
namic one that results in the resonant scattering and
bound state formation of different (p, d-wave) symme-
tries in the gap. Formation of local magnetic moments
induced by a spin vacancy within the RVB theory in the
two-dimensional spin liquid in the underdoped cuprates
was considered in [7,24,25]. Influence of the impurity lo-
cal moments on magnetic and transport properties in the
RVB state were studied within the slave-boson and slave-
fermion mean-field theories in [26]. The importance of 4s
orbital for Zn2+ impurity in charge transfer excitations
between copper 3d and zinc 4s orbitals was pointed out
in [27]. To investigate the influence of nonmagnetic impu-
rities on the d-wave superconductivity several phenomeno-
logical models of Fermi liquid type have been also consid-
ered (see, e.g., [28–32]).

However, to justify the proposed simple models a mi-
croscopical theory of electronic spectrum for the CuO2

plane with a proper consideration of both the strongly
correlated 3d states on copper and zinc sites and 2p states
on oxygen sites should be developed. In the present paper
we propose a microscopical approach based on the orig-
inal p-d model [33,34] and derive an effective Hubbard
model describing a low-energy electronic spectrum of the
Zn-doped CuO2-plane. Based on the band structure cal-
culations for a model CaCuO2 compound with Zn sub-
stitution in Section 2, we conclude that Zn 3d10 orbitals
can be neglected in comparison with Cu 3d-orbitals and O
2p-orbitals. So starting from the three-band p-d Hubbard
model with Zn sites considered as a vacant Cu-site and
employing the cell-perturbation method [35–39] we derive
in Section 3 an effective Hubbard model. In the model
the host lattice has one-hole states of a predominantly Cu
3d-like character and two-hole Zhang-Rice singlet Cu-O
states [40] while at the impurity Zn sites the lowest levels
are the one-hole Wannièr oxygen doublet states. Further

reduction to an effective t-J model in Section 4 reveals
a large ferromagnetic superexchange interaction between
the Cu spin with the nearest virtual oxygen spin in the
Zn cell. Conclusions are presented in Section 4.

2 Band structure of Zn-doped CaCuO2

compound

To obtain a first information about the effect of zinc im-
purities in cuprates we performed band-structure calcu-
lations. We have chosen as the basis of our investigation
one of the simplest undoped cuprates containing CuO2

planes, namely CaCuO2. It is an idealised parent com-
pound to the simple tetragonal Ca0.86Sr0.14CuO2 where
the Sr → Ca substitution is necessary to stabilise the
tetragonal phase but is electronically unimportant. That
compound was also chosen in reference [41] as an ideal
model system to investigate the electronic structure due to
its structural simplicity. It has the space group P4/mmm
and lattice parameters a = 3.86 Å and c = 3.20 Å. It
consists of CuO2 planes which are separated by Ca lay-
ers and is more three-dimensional than, say La2CuO4. To
investigate the effect of zinc impurities we replaced each
second copper atom by zinc in a chess-board-like pattern
and calculated also the band-structure of the hypothetical
compound Ca2CuZnO4 having a twice as large unit cell.

The calculations were done in the local density approx-
imation (LDA) using the linear combination of atomic
orbitals (LCAO). Due to the relatively open structure
one or two empty spheres per unit cell for CaCuO2 or
Ca2CuZnO4, respectively, have been introduced (in the
Ca plane). The calculation was scalar relativistic and we
have chosen a minimal basis set consisting of Cu(4s, 4p,
3d), Zn(4s, 4p, 3d), O(2s, 2p) and Ca(4s, 4p, 3d) orbitals.
The lower-lying states were treated as core states. To op-
timise the local basis a contraction potential has been
used at each site [42]. The exchange and correlation part
was treated in the atomic sphere approximation, while the
Coulomb part of the potential was constructed as a sum
of overlapping spherical contributions.

The resulting density of states (DOS) for CaCuO2 is
shown in Figure 1. The dispersion of the bands in the Bril-
louin zone is not shown but it coincides nearly with the
result given in reference [41]. In contrast with the expected
insulating behaviour of an undoped cuprate we obtain a
metallic state due to the neglect of strong electron correla-
tions in the LDA. The Fermi level lies in the antibonding
copper 3d – oxygen 2p band. The main effect of the elec-
tron correlation is to split that band into two Hubbard
subbands that results in a gap opening of roughly 2 eV.
In the further discussion of the LDA results we will assume
that the other effects of electron correlations on the elec-
tronic structure of the valence band are less important. We
show also the partial Cu- and O-DOS in Figure 1 which
indicate already the strong hybridisation between Cu 3d
and O 2p orbitals throughout the whole valence band.
There is a small contribution of Cu 4s and O 2s orbitals
at the Fermi level: we had to multiply the corresponding
DOS by a factor of 10 to be visible.
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Fig. 1. Total and partial densities of states for CaCuO2. The
Fermi level corresponds to the zero of energy.

Let us now compare the DOS for Ca2CuZnO4 (Fig. 2)
with the reference DOS of CaCuO2 (Fig. 1). First of all,
we observe all the Zn 3d states deep below the Fermi level
at around 8 eV binding energy. That confirms the simple
chemical argument that there should be one hole in the d
shell of copper (configuration d9) but no hole in the d shell
of zinc (d10) (which neglects, however, the d-p hybridisa-
tion between copper and oxygen). Besides that difference
concerning the zinc d levels there is some similarity in
the valence band structures of CaCuO2 and Ca2CuZnO4.
The main band consisting of Cu 3d and O 2p states has
a bandwidth of about 9 eV in both cases. More detailed
analysis shows that the band crossing Fermi level is built
of the Cu 3dx2−y2 and in-plane oxygen 2p orbitals. But its
bandwidth is smaller for Ca2CuZnO4 due to less copper
neighbours at an oxygen site. One can expect that for a
small zinc concentration the original bandwidth should be
recovered. But the position of the zinc 3d levels at around
8 eV should be stable for different amounts of zinc impu-
rities. There is nearly no Cu 4s DOS at the Fermi level
in Figure 2 but some Zn 4s DOS. Due to its smallness
we neglect the 4s states in the construction of the model
Hamiltonian in the following section. Its inclusion will only
be necessary for a more refined picture.

3 Derivation of effective Hubbard model

According to the results of band structure calculations
presented in Section 2 we neglect the Zn orbitals in a tight
binding modelling of Zn-doped CuO2 plane with the main
effect of Zn doping being a creation of vacant Cu-sites. At
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Fig. 2. Total and partial densities of states for Ca2CuZnO4.
The Fermi level is at zero energy.

the same time we suggest that the energy levels of O-2p
orbitals are not considerably changed by substitution of
Zn2+ for Cu2+. Therefore, in a conventional tight binding
description of the CuO2 plane with copper 3dx2−y2 and
oxygen 2px and 2py hole σ-orbitals, one can model Zn-
impurities by vacant 3dx2−y2 sites. Taking into account
only the most important terms, in the limit of strong cor-
relations at the Cu-site (Ud → ∞), we consider the fol-
lowing p-d model Hamiltonian [33,34]

H = εd
∑
iσ

d̂+
iσ d̂iσ + εp

∑
mσ

p+
mσpmσ

+
∑
imσ

(tpdimd̂
+
iσpmσ + H.c.)

+
∑
mnσ

(tppmnp
+
mσpnσ + H.c.), (1)

where i-sites contain only Cu (i.e. i 3 Cu) and m,n sites
contain O atoms (i.e. m,n 3 O) while the the sum over
Zn-sites, being vacant for the Cu sublattice, is omitted.
Here εd and εp = εd − ∆pd are the energies of the lo-
calised holes on Cu and O sites, respectively. The sign

of the hopping integrals tpdim = tpdsgn(Sim) and tppmn =
tppsgn(Smn) are chosen according to the sign-convention



490 The European Physical Journal B

for the coefficients Sim, Smn used in [39]. The fitting pa-
rameters of the model are the difference between the en-
ergy levels, ∆pd = εp − εd ' 4 eV, and the hopping inte-
grals, tpd ' 1.5 eV and tpp ' 0.6 eV (see, e.g., [36–38]).
We used the hole representation in equation (1) with the
vacuum state |3d102p6〉 for both the Cu and Zn sites where

d̂+
iσ = d+

iσ(1−niσ̄) operators create a hole on a copper site i
providing that there is no other hole with the spin σ̄ = −σ
and the operators p+

mσ create a hole with the spin σ on
the oxygen sites m, σ = ±1.

Using unitary transformation from the Fourièr compo-

nent of the original canonical Fermi operators {p
(x)
qσ , p

(y)
qσ }

to the canonical Fermi operators {bqσ, aqσ} [36,43,44](
bqσ
aqσ

)
= S

(
p

(x)
qσ

p
(y)
qσ

)
, (2)

with [39]

S =
i

λq

(
Sqx −Sqy
Sqy Sqx

)
, (3)

where λ2
q = S2

qx + S2
qy , Sqα = sin(qα/2), α = (x, y), one

derives

H = εd
∑
iσ

d̂+
iσ d̂iσ + εp

∑
jσ

(b+jσbjσ + a+
jσajσ)

+2tpd
∑
ijσ

{λ(i− j)d̂+
iσbjσ + H.c.}

−tpp
∑
kjσ

{µ(k − j)(b+kσbjσ − a
+
kσajσ)

−ν(k − j)(a+
kσbjσ + b+kσajσ)}. (4)

Here the operators b+jσ(a+
jσ) acting on the vacuum cre-

ate holes with the spin σ on the orthogonalised oxygen
Wannièr orbitals associated with the cells i 3 Cu and
j, k 3 Cu or Zn.

The corresponding Wannièr coefficient is given by

{λ, µ, ν}(i− j) =
1

N

∑
q

{λ, µ, ν}qeiq(Ri−Rj), (5)

where µ
q

= 8S2
qxS

2
qy/λ

2
q and ν

q
= 4SqxSqy(S2

qx−S
2
qy)/λ2

q.
The summation over q is made inside the first Brillouin

zone and the coefficients λ, µ, ν decrease rapidly with the
distance |Ri −Rj | between the cell sites i and j, as can
be seen from the Table 1.

In the framework of the cell-perturbation method
[35–39], it is useful to divide the Hamiltonian into the
intracell and intercell parts as follows

H = Hloc +Hhop, (6)

where

Hloc = εd
∑
iσ

d̂+
iσd̂iσ +

∑
jσ

(ε
(−)

p b+jσbjσ + ε
(+)

p a+
jσajσ)

+
∑
iσ

(V pd0 d̂+
iσbiσ + H.c.), (7)

Table 1. Coefficients of the oxygen Wannièr orbitals (5).
R(i − j) is the radius vector connecting cell sites i and j,
x̂ and ŷ are the basis cell vectors. Only the coefficient ν
has sign-changing symmetry: ν(x, y) = −ν(y sgn x, x sgn y)
[37,39].

R(i− j) λ µ ν

0 0.958 1.454 0.0
x̂ −0.140 −0.546 −0.266

x̂+ŷ −0.023 0.244 0.0
2x̂ −0.014 −0.128 0.082

where i 3 Cu and j 3 Cu or Zn, V pd0 = 2tpdλ0 and ε
(±)

p =
εp ± µ0tpp.

Hhop =
∑
i6=j,σ

{V pdij d̂
+
iσbjσ +H.c}

−
∑
j 6=k,σ

{V ppjk (b+jσbkσ − a
+
jσakσ)

−W pp
jk (a+

jσbkσ + b+jσakσ)}, (8)

where i 3 Cu cells and k, j 3 Cu or Zn cells and

V pdij = 2tpd λ(i− j), V ppij = tpp µ(i− j),

W pp
ij = tpp ν(i− j). (9)

Exact diagonalisation of the intracell part Hloc, for the
cells containing Cu, gives the lowest one-hole, predomi-
nantly d-type state

|Dσ〉 = cos θ1d
+
σ |0〉 − sin θ1b

+
σ |0〉,

with the corresponding energy

ED =
1

2
(ε

(−)

p + εd)−
1

2

√
(ε(−)

p − εd)2 + 4(V pd0 )2. (10)

The lowest two-hole state which can be identified as the
generalised Zhang-Rice singlet [40] is given by

|ψ〉 = cos θ2
1
√

2
(d+
↑ b

+
↓ − d

+
↓ b

+
↑ )|0〉 − sin θ2b

+
↑ b

+
↓ |0〉,

with the corresponding energy

Eψ =
1

2
(3ε

(−)

p + εd)−
1

2

√
(ε(−)

p − εd)2 + 8(V pd0 )2, (11)

where

cos θ1 =

√√√√√1

2

{
1 +

ε
(−)
p − εd√

(ε
(−)
p − εd)2 + 4(V pd0 )2

}
, (12)

cos θ2 =

√√√√√1

2

{
1 +

ε
(−)
p − εd√

(ε
(−)
p − εd)2 + 8(V pd0 )2

}
. (13)

For cells containing Zn, the lowest one-hole doublet states

|bσ〉 = b+σ |0〉 has the energy ε
(−)
p = εp − µ0tpp.
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Reduction to an effective two-band model is achieved
by reducing the size of the Hilbert subspace to the
lowest states in the one-hole and two-hole sectors
[36–38,44], leaving only one-hole doublet states |bσ〉 for
impurity cells. By introducing the projection Hubbard op-

erators Xα,β
i ≡ (|α〉)i(〈β|)i for the quantum states |α〉, |β〉

in the cell i we obtain

Hloc ' ED
∑
iσ

XDσ,Dσ
i +Eψ

∑
i

Xψ,ψ
i

+ ε(−)
p

∑
kσ

Xbσ,bσ
k , (14)

HCu−Cu
hop '

∑
i6=j,σ

{tψψij X
ψ,Dσ
i XDσ,ψ

j + tDDij XDσ,0
i X0,Dσ

j

+ σtψDij (XDσ,0
i XDσ̄,ψ

j + H.c.)}, (15)

HCu−Zn
hop '

∑
i6=k,σ

{tψbik σ(Xψ,Dσ̄
i X0,bσ

k + H.c.)

+ tDbik (XDσ,0
i X0,bσ

k + H.c.)}, (16)

where now and what follows we use the indices (i, j) for
the cells with Cu (i, j 3 Cu) and the index (k) only for
the impurity cells with Zn (k 3 Zn). The effective hopping
parameters between the cells containing Zn and Cu are
given by

tψψij =KψψV
pd
ij −A

2
cV

pp
ij , tDDij =KDDV

pd
ij −V

pp
ij sin2 θ1,

tψDij =KψDV
pd
ij +AcV

pp
ij sin θ1, tψbik =AdV

pd
ik −AcV

pp
ik ,

(17)

tDbik = V pdik cos θ1 + V ppik sin θ1,

where

Kψψ = 2AdAc, KDD = −2 sinθ1 cos θ1,

KψD = Ac cos θ1 −Ad sin θ1

with the corresponding coefficients

Ad = −
1
√

2
sin θ1 cos θ2,

Ac = sin θ1 sin θ2 +
1
√

2
cos θ1 cos θ2.

In this way, we obtain a two-band Hubbard-like model
with one-hole Wannièr oxygen levels in the Zn-cells. By
neglecting HZn−Zn

hop term in the limit of low Zn-impurity
concentration, we can write the effective two-band Hub-
bard model for CuO2 plane with Zn impurities in the final
form:

H ' Hloc +HCu−Cu
hop +HCu−Zn

hop − µN, (18)

where µ is the chemical potential and

N =
∑
i

(2Xψ,ψ
i +

∑
σ

XDσ,Dσ
i ) +

∑
kσ

Xbσ,bσ
k (19)

is the number operator for which [N,H] = 0 is satisfied.

4 Reduction to extended t-J model

In order to compare the corresponding t-J model for a
pure CuO2 plane [40] and for a Zn-doped one we further
reduce the two-band model (18) to the one-band one. To
separate terms describing motions inside and between sin-
glet and one-particle bands, it is convenient to rearrange
the Hamiltonian (18) in the following way

H = H0 +H1 +H ′1 (20)

H0 = Hloc − µN, H1 = T11 + T22,

H ′1 = (T12 + T1̃2 + T11̃) + H.c.,

where

T11 =
∑
i6=j,σ

tDDij XDσ,0
i X0,Dσ

j ,

T22 =
∑
i6=j,σ

tψψij X
ψ,Dσ
i XDσ,ψ

j ,

T12 =
∑
i6=j,σ

σtψDij XDσ,0
i XDσ̄,ψ

j ,

T1̃2 =
∑
i6=k,σ

σtψbik X
bσ,0
k XDσ̄,ψ

i , (21)

T11̃ =
∑
i6=k,σ

tDbik X
Dσ,0
i X0,bσ

k ,

where i, j 3 Cu cells and k 3 Zn cells.
Using the Schrieffer-Wolff transformation [45]

H̃ = eSHe−S ' H0 +H1 + [S,H1] +
1

2
[S,H ′1], (22)

one can obtain an effective Hamiltonian H̃ without inter-
band hopping H ′1. The generator of the transformation S
determined by the condition H ′1 + [S,H0] = 0 is given by

S = (AT12 +BT1̃2 + CT11̃)−H.c., (23)

where the coefficients are

A =
1

2ED −Eψ
, B =

1

ED −Eψ + ε
(−)
p

,

C =
1

ED − ε
(−)
p

· (24)

Performing the commutations in (22), one obtains

H̃ = H0 +H1 +
1

2
[S,H ′1]

2X
+ H̃

3X
, (25)
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where

1

2
[S,H ′1]2X = −A

∑
i6=j,σ

(tψDij )2{XDσ,Dσ̄
i XDσ̄,Dσ

j

−XDσ,Dσ
i XDσ̄,Dσ̄

j +Xψ,0
i X0,ψ

j +Xψ,ψ
i X0,0

j }

− B
∑
i6=k,σ

(tψbik )2{XDσ,Dσ̄
i Xbσ̄,bσ

k

−XDσ,Dσ
i Xbσ̄,bσ̄

k +Xψ,ψ
i X0,0

k }

− C
∑
i6=k,σ

(tDbik )2{X0,0
i Xbσ,bσ

k −XDσ,Dσ
i X0,0

k },

(26)

where i, j 3 Cu cells and k 3 Zn cells. The remaining
part H̃3X with products of three Hubbard X-operators at
different lattice sites

H̃3X = [S,H1]3X +
1

2
[S,H ′1]3X (27)

is given in the Appendix.
Now we introduce spin operators for Cu-sites

Szi =
1

2

∑
σ

σXDσ,Dσ
i , Sσi = XDσ,Dσ̄

i , (28)

and a spin operator for the oxygen orbital |bσ〉 at Zn cell

szk =
1

2

∑
σ

σXbσ,bσ
k , sσk = Xbσ,bσ̄

k , (29)

with σ = ±1. Then we obtain the effective Hamiltonian
in the form of the corresponding t-J model for Zn-doped
CuO2-plane

H̃ = H̃0 + H̃t + H̃J + H̃3X +∆H̃, (30)

H̃0 =
∑
iσ

ẼD(i)XDσ,Dσ
i +

∑
kσ

ε̃
(−)

p (k)Xbσ,bσ
k

+
∑
i

Ẽψ(i)Xψ,ψ
i , (31)

H̃t =
∑
i6=j,σ

tDDij XDσ,0
i X0,Dσ

j +
∑
i6=j,σ

tψψij X
ψ,Dσ
i XDσ,ψ

j ,

(32)

H̃J =
∑
i6=j

JDDij (Si · Sj −
1

4
NiNj)

+
∑
i6=k

JDbik

(
Si · sk −

1

4
Nink

)
, (33)

∆H̃ = −2A
∑
i6=j

(tψDij )2Xψ,0
i X0,ψ

j

+
∑
i6=k,σ

{B(tψbik )2 + C(tDbik )2}Xψ,ψ
i Xbσ,bσ

k (34)

where Ni =
∑
σX

Dσ,Dσ
i + 2Xψ,ψ

i and nk =
∑
σX

bσ,bσ
k .

The second sum in ∆H̃ describes density-density interac-
tions between impurity and host lattice sites. The first sum

in∆H̃ and H̃
3X

contain double hopping processes between
bands and they are of second order in effective hopping
parameters. The effective superexchange integrals are

JDDij = −2A(tψDij )2 > 0, (35)

JDbik = −2B(tψbik )2 < 0. (36)

By taking the conventional values of the model parame-
ters, ∆pd = 4 eV, tpd = 1.5 eV, tpp = 0.6 eV, we obtain for
the energy differences in the coefficients (24) the following
values (in eV):

Eψ − 2ED ' 3.75, ED + ε(−)
p −Eψ ' 1.09,

ε(−)
p −ED ' 4.84.

The corresponding hopping parameters and the exchange
energies are presented in Table 2.

The effective energies in (31) are

ẼD(i) = ED − µ+ C
∑
k 6=i

(tDbik )2,

ε̃
(−)

p (k) = ε
(−)

p − µ− C
∑
i6=k

(tDbik )2, (37)

Ẽψ(i) = Eψ − 2µ+
∑
j 6=i

JDDij +
∑
k 6=i

JDbik . (38)

The shifts of the on-site energies in these equations are
of the order of small exchange energies and can be disre-
garded.

Depending on the position of the chemical potential µ
in the one-hole d-like band (electron doping) or the two-
hole singlet band (hole doping) one can consider in the
low-energy limit only the one-band effective t-J model
with the corresponding single site energy in equation (31)
and the hopping energy in equation (32), and the exchange
interaction, equation (33), which includes both the Cu-Cu
and Cu-Zn lattice cell spin exchange interactions. How-
ever, the filling of the bands will occur in such a way
that after filling the d-like band at first the two-hole sin-
glet band will be filled and only after that the oxygen
doublet states at Zn cells can be filled by holes. That
becomes evident from comparing the singlet excitation
energy Eψ − 2ED ' 3.75 eV and the doublet excitation

energy ε
(−)
p − ED ' 4.84 eV when all Cu cells are occu-

pied by exactly one hole and the Zn cells are empty. So
we can understand the spin operator equation (29) for the
oxygen orbital |bσ〉 at the Zn cell in equation (33) as a vir-
tual spin. Exchange interaction of the Cu spin with it just
takes into account the second order perturbation due to
the hybridisation between singlet states at Cu cells with
the oxygen doublet states in the nearest Zn cells. As the
estimations show, we have quite a large ferromagnetic ef-
fective exchange interaction between the Cu spin and the
virtual oxygen spin at the Zn cell.



Ž. Kovačević et al.: Hubbard model for Zn-doped CuO2 plane 493

Table 2. Values (in eV) of the hopping parameters (17) and the superexchange integrals (35, 36) for the model parameters:
∆pd = 4 eV, tpd = 1.5 eV, tpp = 0.6 eV.

R(i− j) tψψij tDDij tψDij tψbij tDbij JDDij JDbij

x̂ 0.402 0.454 −0.481 0.384 −0.528 0.124 −0.270

x̂+ŷ −0.059 0.022 0.002 −0.095 0.015 1.6×10−6 −0.017

5 Conclusions

In the present paper we proposed the effective two-
band Hubbard model for CuO2 plane with Zn-impurities,
equation (18). Based on the band-structure calculations
for the model systems, CaCuO2 and Ca2CuZnO4, we de-
scribe the Zn-impurity as a vacant lattice site in the copper
sublattice of 3d states while keeping the oxygen sublattice
unaffected by Zn substitution. Therefore, in the model the
Zn-impurities are not inert substitutions for Cu but show
up as oxygen Wannièr states in Zn cells. For the undoped
case the excitation energy for the Wannièr states is rather

large (ε
(−)
p −ED ' 4.8 eV) to produce strong effects. How-

ever, at finite doping an exchange between holes in the
Cu singlet band and the oxygen Wannièr states at Zn
cells can result in a strong scattering due to much smaller

excitation energy ED + ε
(−)
p − Eψ ' 1.1 eV. This can ex-

plain a much stronger reduction of the Néel temperature
by Zn impurities at finite doping [4] and finite density of
states at the Fermi level in the singlet band [10–13]. To
study magnetic properties within the model one can use
also the effective one-band t-J model, equation (30) ob-
tained by further reduction of the two-band model (18). In
the t-J model the Zn-impurity cells are described by vir-
tual oxygen spins-1/2 with strong ferromagnetic superex-
change interaction (36) with the nearest neighbour Cu
sites. By using these microscopical models it is possible
to study an influence of Zn impurities both on the anti-
ferromagnetic spin correlations in CuO2 plane and on the
superconducting transition. The results of these studies
will be considered elsewhere.
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Appendix

The three site part (27) of the effective t-J model can be
written in the form:

H̃3X =
∑

α∈{A,B,C}

αH̃
3X

(α),

H̃3X(α) = H̃0ψ
3X(α) + H̃DD

3X (α) + H̃SS̄
3X (α), (A.1)

where the coefficients A, B and C are given in (24) and
where

H̃0ψ
3X(A) =

∑
i6=j 6=m,σ

{[−σtψDij (tDDjm XDσ,0
i XDσ̄,0

m X0,ψ
j

+ tψψjmX
ψ,0
j XDσ̄,ψ

i XDσ,ψ
m ) + H.c.]

+ tψDij tψDjm (Xψ,0
j XDσ̄,ψ

i X0,Dσ̄
m

+XDσ,0
i Xψ,Dσ

m X0,ψ
j )}

+
1

2

∑
i6=j 6=k,σ

[(tψDij tψbjkX
ψ,0
j XDσ̄,ψ

i X0,bσ̄
k

− σtψDij tDbjk X
Dσ,0
i Xbσ̄,0

k X0,ψ
j ) + H.c.], (A.2)

H̃DD
3X (A)=

∑
i6=j 6=m,σ

{[σtψDij (−tDDjm XDσ,0
m (X0,0

j +XDσ,Dσ
j )XDσ̄,ψ

i

+ tψψjmX
Dσ,0
i (XDσ̄,Dσ̄

j +Xψ,ψ
j )XDσ̄,ψ

m ) + H.c]

+ tψDij tψDjm (XDσ,0
i XDσ̄,Dσ̄

j X0,Dσ
m

+XDσ,0
i Xψψ

j X0,Dσ
m −Xψ,Dσ̄

m X0,0
j XDσ̄,ψ

i

−Xψ,Dσ̄
m XDσ,Dσ

j XDσ̄,ψ
i )}

+
1

2

∑
i6=j 6=k,σ

[tψDij tψbjk (XDσ,0
i XDσ̄,Dσ̄

j X0,bσ
k

+XDσ,0
i Xψ,ψ

j X0,bσ
k )

+ σtψDij tDbjk (Xbσ,0
k X0,0

j XDσ̄,ψ
i

+Xbσ,0
k XDσ,Dσ

j XDσ̄,ψ
i ) + H.c.], (A.3)
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H̃SS̄
3X

(A) =
∑

i6=j 6=m,σ

{[σtψDij (−tDDmj X
Dσ̄,0
m XDσ,Dσ̄

j XDσ̄,ψ
i

+ tψψjmX
Dσ,0
i XDσ̄,Dσ

j XDσ,ψ
m ) + H.c.]

− tψDij tψDjm (XDσ,0
i XDσ̄,Dσ

j X0,Dσ̄
m

−Xψ,Dσ
m XDσ,Dσ̄

j XDσ̄,ψ
i )}

−
1

2

∑
i6=j 6=k,σ

[(tψDij tψbjkX
Dσ,0
i XDσ̄,Dσ

j X0,bσ̄
k

+σtψDij tDbjk X
bσ̄,0
k XDσ,Dσ̄

j XDσ̄,ψ
i ) + H.c.],

(A.4)

H̃0ψ
3X

(B) =
[ ∑
i6=j 6=k,σ

(
σtψbik t

DD
ij XDσ̄,0

j Xbσ,0
k X0,ψ

i

−
1

2
tψDij tψbjkX

ψ,0
j X0,bσ̄

k XDσ̄,ψ
i

)
−

1

2

∑
i6=k 6=K,σ

σtψbik t
Db
iKX

bσ,0
k Xbσ̄,0

K X0,ψ
i

]
+ H.c.,

(A.5)

H̃DD
3X

(B) =
∑

i6=j 6=k,σ

{[(
σtψbik t

ψψ
ij (Xbσ,0

k XDσ̄,Dσ̄
i XDσ̄,ψ

j

+Xbσ,0
k Xψ,ψ

i XDσ̄,ψ
j )

+
1

2
σtψbik t

Db
jk (XDσ,0

j X0,0
k XDσ̄,ψ

i −XDσ,0
j Xbσ,bσ

k XDσ̄,ψ
i )

+
1

2
tψDij tψbjk (XDσ,0

i XDσ̄,Dσ̄
j X0,bσ

k

+XDσ,0
i Xψ,ψ

j X0,bσ
k )

)
+ H.c.

]
+tψbik t

ψb
jk (Xψ,Dσ̄

j X0,0
k XDσ̄,ψ

i +Xψ,Dσ̄
j Xbσ,bσ

k XDσ̄,ψ
i )

}
+

∑
i6=k 6=K,σ

tψbik t
ψb
iK(Xbσ,0

k XDσ̄,Dσ̄
i X0,bσ

K

+Xbσ,0
k Xψ,ψ

i X0,bσ
K ) (A.6)

H̃SS̄
3X (B) =

∑
i6=j 6=k,σ

{[
(σtψbik t

ψψ
ij X

bσ,0
k XDσ̄,Dσ

i XDσ,ψ
j

−
1

2
σtψbik t

Db
jk X

Dσ̄,0
j Xbσ,bσ̄

k XDσ̄,ψ
i

−
1

2
tψDij tψbjkX

Dσ,0
i XDσ̄,Dσ

j X0,bσ̄
k ) + H.c.

]
− tψbik t

ψb
jkX

ψ,Dσ
j Xbσ,bσ̄

k XDσ̄,ψ
i

}
−

∑
i6=k 6=K,σ

tψbik t
ψb
iKX

bσ,0
k XDσ̄,Dσ

i X0,bσ̄
K , (A.7)

H̃0ψ
3X(C) =

{ ∑
i6=j 6=k,σ

[
−

1

2
σtψDij tDbjk X

Dσ,0
i Xbσ̄,0

k X0,ψ
j

− tDbik t
ψψ
ij X

Dσ,ψ
j X0,bσ

k Xψ,0
i

]
−

1

2

∑
i6=k 6=K,σ

σtψbik t
Db
iKX

bσ,0
k Xbσ̄,0

K X0,ψ
i

}
+ H.c.,

(A.8)

H̃DD
3X (C) =

∑
i6=j 6=k,σ

{[(
tDbik t

DD
ij (XDσ,0

j X0,0
i X0,bσ

k

+XDσ,0
j XDσ,Dσ

i X0,bσ
k )

−
1

2
σtψDij tDbjk (Xbσ,0

k X0,0
j XDσ̄,ψ

i +Xbσ,0
k XDσ,Dσ

j XDσ̄,ψ
i )

+
1

2
σtψbik t

Db
jk (XDσ,0

j X0,0
k XDσ̄,ψ

i

+XDσ,0
j Xbσ,bσ

k XDσ̄,ψ
i )

)
+ H.c.

]
+tDbik t

Db
jk (XDσ,0

i X0,0
k X0,Dσ

j +XDσ,0
i Xbσ,bσ

k X0,Dσ
j )

}
−

∑
i6=k 6=K,σ

tDbik t
Db
iK (Xbσ,0

K X0,0
i X0,bσ

k

+Xbσ,0
K XDσ,Dσ

i X0,bσ
k ), (A.9)

H̃SS̄
3X (C) =

∑
i6=j 6=k,σ

{[(tDbik t
DD
ij XDσ̄,0

j XDσ,Dσ̄
i X0,bσ

k

−
1

2
σtDbjk t

ψD
ij Xbσ̄,0

k XDσ,Dσ̄
j XDσ̄,ψ

i

+
1

2
σtψbik t

Db
jk X

Dσ̄,0
j Xbσ,bσ̄

k XDσ̄,ψ
i )

+ H.c.] + tDbik t
Db
jk X

Dσ,0
i Xbσ̄,bσ

k X0,Dσ̄
j }

−
∑

i6=k 6=K,σ

tDbik t
Db
iKX

bσ̄,0
K XDσ,Dσ̄

i X0,bσ
k , (A.10)

where i, j,m 3 Cu cells and k,K 3 Zn cells and in the
summation all three lattice cites are different.
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